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Abstract

In this paper is studied, as a complement of Joachimsthal theorem, the behavior of
curvature lines near a principal cycle common to two orthogonal surfaces.
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1 Introduction

The local behavior of curvature lines near umbilic points was considered by G. Darboux,
[3], for analytic surfaces and by C. Gutierrez and J. Sotomayor, [7], for Cr surfaces.
Near principal cycles, the local behavior of curvature lines was first considered in details by
C. Gutierrez and J. Sotomayor, [7]. They obtained the derivative of the first return map
π : Σ → Σ associated to the periodic leaf and showed that generically (open and dense set
of immersions) the principal cycles are hyperbolic, i.e, π′(0) 6= 1.
The Joachimsthal theorem says that two surfaces intersecting at a constant angle along a
regular curve γ and this curve is a curvature line of one surface then it is a curvature line
of the other.
The main goal of this paper is to describe the local behavior near a principal cycle common
to two surfaces intersecting orthogonally.
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2 Differential equation of curvature lines

A principal curvature line is a regular curve (parametrized by arc length s) γ : (a, b) → M\U
such that for all s ∈ (a, b) we have γ ′(s) is a principal direction.
The normal curvature at p in the direction w ∈ TpM is kn(p; w) = II(p; w)/I(p; w), where
I and II are, respectively, the first and second fundamental forms of M.
Therefore, w = (du, dv) is a principal direction, if and only if, there exists λ ∈ R such that

II(p; w) = λI(p; w), I(p; w) = 1.

This means that I e II are proportional in the direction w.
As I(p; w) = Edu2 + 2Fdudv + Gdv2 and II(p; w) = edu2 + 2fdudv + gdv2 we have that
w = (du, dv) is a principal direction, if and only if,

∂(I, II)
∂(du, dv)

= 0.

Or, equivalently by,

(Fg − Gf)dv2 + (Eg − Ge)dudv + (Ef − Fe)du2 = 0. (1)

In the case where M is parametrized as graph (x, y, h(x, y)) we have that

E =1 + h2
x, F = hxhy , G = 1 + h2

y ,

e =
hxx√

EG− F 2
, f =

hxy√
EG− F 2

, g =
hyy√

EG− F 2
.

When M is defined implicitly M = {(x, y, z) : h(x, y, z) = 0} the differential equation of
curvature lines is expressed y

[dp,∇h, d∇h] = 0,

where dp = (dx, dy, dz), ∇h = (hx, hy , hz), d∇h = (dhx, dhy, dhz) and [., ., .] denotes the
mist product of three vectors.

Remark 1. See the books and lecture notes [1], [2], [5], [7], [6], [8], [9], [10], [11] and [12]
for more on local and global properties of principal curvature lines on surfaces.

3 General properties of curvature lines

Theorem 1 (Joachimsthal). Let M1 ⊂ R3 and M2 ⊂ R3 two regular and oriented surfaces
such that M1 ∩ M2 = γ is a regular curve and 〈N1(γ(s)), N2(γ(s))〉 = cte along γ, where
N1 and N2 are unitary normal vector fields to M1 and M2. Then γ is a principal curvature
line of M1 if and only if it is a curvature line of M2.
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Proof. Suppose that 〈N1(γ(s)), N2(γ(s))〉 = 0.

Let T = γ ′(s) and suppose that γ is a principal curvature line, with geodesic curvature kg,1,
geodesic torsion τg,1 = 0 and principal curvature km,1, for the surface M1. See [11]. So,

T ′ =kg,1N1 ∧ T + km,1N1

(N1 ∧ T )′ = − kg,1T + τg,1N

N ′
1 = − km,1T − τg,1N ∧ T

(2)

The Darboux frame for γ, as a curve of M2, is given by:

T ′ =kg,2N2 ∧ T + kn,2N2

(N2 ∧ T )′ = − kg,2T + τg,2N2

N ′
2 = − kn,2T − τg,2(N2 ∧ T )′

(3)

where kn,2 is the normal curvature, τg,2 is the geodesic torsion and kg,2 is the geodesic
curvature of γ as a curve of M2.
Also N2 = ±N1 ∧ T , since 〈N1, N2〉 = 0. Suppose N2 = N1 ∧ T . From the equations (2)
and (3), and using that N1 = T ∧ N2, it follows that:

τg,2 =τg,1 = 0
kg,1 =km,2

kg,2 =km,1,

where km,2 is a principal curvature of M2. Therefore γ is a principal curvature line of M2.

The case 〈N1, N2〉 = cte 6= 0 is analogous.

Proposition 1. A closed, simple and biregular curve c : R → R3, |c′(s)| = 1, of length L

and torsion τ is a principal curvature line of a surface if, and only if,
∫ L
0 τ(s)ds = 2kπ, k ∈ N.

Proof. Consider the Frenet frame {t, n, b} associated to c.
Let N = cos θ(s)n(s) + sin θ(s)b(s) be a unitary normal vector to c.
So it follows that,

N ′(s) = −k(s) cos θ(s)t(s) + (θ′(s) + τ(s))[− sinθ(s)n(s) + cos θ(s)b(s)].

Therefore, N ′(s) = λt(s) if and only if θ′(s) + τ(s) = 0.
So θ(L) − θ(0) = −

∫ L
0 τ(s)ds e N(L) = N(0) if and only if

∫ L
0 τ(s)ds = 2kπ, k ∈ N.

Proposition 2. Let γ : [0, L] → R3 be a principal cycle of a surface M such that
{T, N ∧ T, N} is a positive frame of R3. Then the expression

α(s, v) =γ(s) + v(N ∧ T )(s)

+
(

1
2
k2(s)v2 +

1
6
b(s)v3 +

1
24

c(s)v4 + o(v4)
)

N(s), −δ < v < δ
(4)
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where k2 is the principal curvature in the direction of N ∧ T , defines a local C∞ chart on
the surface M̂ defined in a small tubular neighborhood of γ.

Proof. The map α(s, v, w) = c(u) + v(N ∧ T )(s) + wN(s) is a local diffeomorphism in
a neighborhood of the s axis. For each s, the curve v → v(N ∧ T )(s) + w(s, v)N(s) is
the intersection of the surface M̂ with the plane spanned by {(N ∧ T )(s), N(s)}. Using
Hadamard’s lemma it follows that

w(s, v) = [
1
2
k2(s)v2 + v2A(s, v)]N(s)

where A(s, 0) = 0 and k2 is the (plane) curvature of the curve in the plane spanned by
{N ∧ T, N}, that cuts the surface M̂. This ends the proof.

According to [11], the Darboux frame {T, N ∧ T, N} along γ satisfies the following system
of differential equations:

T ′ = kgN ∧ T + k1N

(N ∧ T )′ = −kgT + 0N

N ′ = −k1T − 0(N ∧ T )
(5)

where k1 is the principal curvature and kg is the geodesic curvature of the principal cycle γ.

4 Preliminary calculations

Consider the parametrizations α of M1 and β of M2 in a neighborhood of γ, such that
{T, N∧T, N} is a positive frame of γ as a curve of M1 and {T, N, T∧N} is a positive frame
of γ as a curve of M2.

α(s, v) =γ(s) + v(N ∧ T )(s) + [
1
2
k2(s)v2 +

1
6
b(s)v3 + O(v3)]N(s)

β(s, w) =γ(s) + wN(s) + [
1
2
m2(s)w2 +

1
6
B(s)w3 + O(w3)](T ∧ N)(s).

(6)

4.1 Immersion α

The coefficients of the first fundamental form of α are given by:

Eα(s, v) =1 − 2kgv + [k2
g − k1k2]v2 + O(v3)

Fα(s, v) =O(v3)

Gα(s, v) =1 + k2
2v

2 + O(v3)

(7)

The unitary normal vector field Nα = (αs ∧ αv)/|αs ∧ αv| is given by:
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Nα(s, v) =[−1
2
k′

2v
2 + O(v3)]T (s)− [k2v +

1
2
b(s)v2 + O(v3)](N ∧ T )(s)

+[1− 1
2
k2

2v
2 + O(v3)]N(s)

(8)

The coefficients of the second fundamental form of α are given by:

eα(s, v) =k1 − (k1 + k2)kgv

+
1
2
[k′′

2 − (k1 + k2)k1k2 − kgb(s) + 2k2
gk2]v2 + O(v3)

fα(s, v) =k′
2v +

1
2
[kgk

′
2 + b′(s)]v2 + O(v3)

gα(s, v) =k2 + b(s)v +
1
2
(c(s)− k3

2)v
2 + O(v3)

(9)

The functions Lα = (Fg − Gf)α, Mα = (Eg − Ge)α and Nα = (Ef − Fe)α are given by:

Lα(s, v) = − k′
2v − 1

2
(kgk

′
2 + b′(s))v2 + O(v3)

Mα(s, v) =k2 − k1 + [(k1 − k2)kg + b(s)]v

+
1
2
[(−3k1k

2
2 − 3kgb(s) + c(s)− k3

2 − k′′
2 + k2

1k2]v2 + O(v3)

Nα(s, v) =k′
2v +

1
2
(b′(s) − 3kgk

′
2)v

2 + O(v3)

(10)

The functions Kα and Hα are given by:

Kα(s, v) =k1k2 + [(k1k2 − k2
2)kg(s) + k1b(s)]v + O(v2)

Hα(s, v) =
1
2
(k2 + k1) +

1
2
[(k1 − k2)kg + b(s)]v + O(v2)

(11)

The principal curvatures k1,α = Hα −
√

H2
α − Kα and k2,α = Hα +

√
H2

α −Kα are given
by:

k1,α(s, v) =k1 + (k1 − k2)kgv + 0(v2)

k2,α(s, v) =k2 + b(s)v + 0(v2)
(12)

Remark 2. The following relations holds

kg(s) = − (k1)v

k2 − k1
, k⊥

g (s) = − (k2)′

k2 − k1
, b(s) = (k2)v =

∂k2

∂v
(13)

Here k⊥
g (s) is the geodesic curvature of the other principal curvature line which pass through

γ(s).
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4.2 Immersion β

The coefficients of the first fundamental form of β are given by:

Eβ(s, w) =1 − 2k1w + (k2
1 + kgm2)w2 + O(w3)

Fβ(s, w) =O(w3)

Gβ(s, w) =1 + m2
2w

2 + O(w3)

(14)

The unitary normal vector field Nβ = βs ∧ βw/|βs ∧ βw| is given by:

Nβ(s, w) =[−1
2
m′

2w
2 + O(w3)]T (s)− [m2w +

1
2
B(s)w2 + O(w3)](N ∧ T )(s)

+[1− 1
2
m2

2w
2 + O(w3)]N(s)

(15)

The coefficients of the second fundamental form of β are given by:

eβ(s, w) = − kg − k1[m2 − kg]w

+
1
2
[m′′

2 − k1B(s) + 2k2
1m2 + k2

gm2 + kgm
2
2]w

2 + O(w3)

fβ(s, w) =m′
2v +

1
2
[k1m

′
2 + B′(s)]w2 + O(w3)

gβ(s, w) =m2 + B(s)w +
1
2
(C(s) − m3

2)w
2 + O(w3)

(16)

The functions Lβ = (Fg − Gf)β, Mβ = (Eg − Ge)β and Nβ = (Ef − Fe)β are given by:

Lβ(s, w) = − m′
2w − 1

2
(k1m

′
2 + B′(s))w2 + O(w3)

Mβ(s, w) =m2 + kg + [B(s) − k1(m2 + kg)]v

+
1
2
[(3kgm

2
2 − 3k1B(s) + C(s) − m3

2 − m′′
2 − k2

gm2]w2 + O(w3)

Nβ(s, w) =m′
2(s)v +

1
2
(B′(s) − 3k1m

′
2)w

2 + O(w3)

(17)

The functions Kβ and Hβ are given by:

Kβ(s, w) = − kgm2 − [(kgm2 + m2
2)k1 + kgB(s)]w + O(w2)

Hβ(s, w) =
1
2
(m2 − kg) +

1
2
[B(s) − (kg + m2)k1]w + O(w2)

(18)

The principal curvatures k1,β = Hβ −
√
H2

β − Kβ and k2,β = Hβ +
√

H2
β −Kβ are given by:

k1,β(s, w) = − kg − (kg + m2)k1w + O(w2)

k2,β(s, w) =m2 + B(s)w + O(w2)
(19)
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5 Principal cycles

Proposition 3 (Gutierrez-Sotomayor). Let γ be a principal cycle of an immersion
α : M → R3 of length L. Denote by πα the first return map associated to γ. Then

π′
α(0) =exp[

∫

γ

−dk2

k2 − k1
] = exp[

∫

γ
k⊥

g (s)ds]

=exp[
∫

γ

−dk1

k1 − k2
] = exp[

1
2

∫

γ

dH√
H2 −K

].
(20)

Proof. Suppose that γ is a principal cycle and consider the chart (s, v) as defined by the
expression of α in the equation (6). The differential equation of the principal curvature
lines is given by

(f − k1F )ds + (g − k1G)dv = 0. (21)

Therefore π(v0) = v(L, v0), where v(s, v0) is the solution of equation 21 with initial condition
v(0, v0) = v0.
Differentiation of equation 21 with respect to v0 gives:

d

ds
(

∂v

∂v0
)(s, v(s, v0)) = −[

f − k1F

g − k1G
]v(s, v(s, v0))

∂v

∂v0
(s, v(s, v0))

Denote a(s) = ( ∂v
∂v0

)(s, 0). Therefore at v(s, 0) = 0 it is obtained

d

ds
a(s) = −fv(s, 0)

g − k1
a(s) = − k′

2

k2 − k1
a(s) = k⊥

g (s)a(s), a(0) = 1.

Integration of the linear differential equation above leads to the result.

The following result established in [4] is improved in the next proposition.

Proposition 4. Let γ be a principal cycle of length L of a surface M ⊂ R3. Consider a
chart (s, v) and a parametrization α as defined by equation (6). Denote by k1 and k2 the
principal curvatures of M. Suppose that Jac(k1, k2) = ∂(k1,k2)

∂(s,v)
= (k1)s(k2)v −(k1)v(k2)s 6= 0

for all s ∈ [0, L]. Then if γ is not hyperbolic then it is semihyperbolic. That is, if the first
derivative of the first return map π associated to γ is one, then the second derivative of π
is different from zero. In fact, if π′(0) = 1 then,

π′′(0) =
∫ L

0

e
−

∫ s
0

k′2
k2−k1

du Jac(k1, k2)
(k2 − k1)2

ds.
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Proof. The differential equation of the principal curvature lines 21 in the chart (s, v) is
given by

dv

ds
= − f − k1F

g − k1G

= − k′
2

k2 − k1
v − 1

2
[
b′(k2 − k1) − 2k′

2b + kgk
′
2(k1 − k2)

(k2 − k1)2
]v2 + v2R(s, v)

=P (s)v +
1
2
Q(s)v2 + R(s, v)v2, R(s, 0) = 0

. (22)

Therefore π(v0) = v(L, v0), where v(s, v0) is the solution of equation (22) with initial con-
dition v(0, v0) = v0.
Differentiating twice the equation (22) with respect to v0 and evaluating at v0 = 0 the
following holds

d

ds
(

∂v

∂v0
) =P (s)

∂v

∂v0

d

ds
(
∂2v

∂v2
0

) =P (s)
∂2v

∂v2
0

+ Q(s)(
∂v

∂v0
)2

∂v

∂v0
(0) =1,

∂2v

∂v2
0

(0) = 0

So,

π′′(0) =
∂2v

∂v2
0

(L) =
∫ L

0
exp(

∫ s

0
P (u)du)Q(s)ds

=
∫ L

0

exp(−
∫ s

0

k′
2

k2 − k1
du)[

2k′
2b− b′(k2 − k1) − kgk

′
2(k1 − k2)

(k2 − k1)2
]ds

Integration by parts and using that kg(k1 − k2) = ∂k1
∂v it follows that

π′′(0) =
∫ L

0
exp(−

∫ s

0

k′
2

k2 − k1
du)[

k′
1

∂k2
∂v − k′

2
∂k1
∂v

(k2 − k1)2
]ds

=
∫ L

0

exp(−
∫ s

0

k′
2

k2 − k1
du)

Jac(k1, k2)
(k2 − k1)2

ds

Proposition 5. Let c : R → R3, |c′(s)| = 1 be a closed, simple and biregular curve of
length L and torsion τ such that

∫ L
0 τ(s)ds = 2kπ, k ∈ N. Then there exists an immersion

α : [0, L]× (−ε, ε) → R3 such that α(s, 0) = c(s) is a hyperbolic principal cycle of α.
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Proof. It follows from propositions 2 and 3 defining the principal curvatures adequately.

Theorem 2. Let γ be a hyperbolic (minimal) principal cycle of a surface M ⊂ R3 of length
L. Let k1 and k2 the principal curvatures of M1 and kg the geodesic curvature of γ. Let
P (s) = k′

2/(k2 − k1) and suppose that the linear differential equation f ′ = P (s)f + k′
g has

a L−periodic solution such that f(s) 6= 0 for all s ∈ [0, L]. Then there exists a surface
M2 ⊂ R3 such that γ is a principal hyperbolic principal cycle of M2 which is orthogonal to
M1 along γ and π′

1(0) = π′
2(0).

Proof. Consider the parametrizations α of M1 and β of M2 in a neighborhood of γ,

α(s, v) =γ(s) + v(N ∧ T )(s) + [
1
2
k2(s)v2 +

1
6
b(s)v3 + O(v3)]N(s)

β(s, w) =γ(s) + wN(s) + [
1
2
m2(s)w2 +

1
6
B(s)w3 + O(w3)](T ∧ N)(s).

where {T, N ∧T, N} is a positive frame of γ as curve of M1 and {T, N, T ∧N} is a positive
frame of γ as curve of M2.

By proposition 3 it follows that

π′
α(0) = exp[−

∫

γ

dk2

k2 − k1
], π′

β(0) = exp[−
∫

γ

dm2

m2 + kg
] (23)

Suppose that the following equation holds

k′
2

k2 − k1
=

m′
2

m2 + kg
.

Then m2 is a defined by the linear differential equation:

m′
2 −

k′
2

k2 − k1
m2 − kg

k′
2

k2 − k1
= 0, m2(0) = m0. (24)

The solution of the linear equation above is given by

m2(s) = e
∫ s
0 a(t)dt[m0 +

∫ s

0

e−
∫ t
0 a(u)dukg(t)a(t)dt],

where a(s) = k′
2/(k2 − k1)(s).

As, by hypothesis,
∫ L
0

k′
2

k2−k1
6= 0 it follows that

m0 = m2(0) = m2(L) if and only if

m0 =

∫ L
0 (e−

∫ t
0 a(u)du)kg(t)a(t)dt

e
−

∫ L
0

k′2
k2−k1

ds − 1
.
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Therefore the immersion β can be constructed with m2, principal curvature of β, defined
by the equation 24. To finish we need to show that m2(s) + kg(s) 6= 0 for all s ∈ [0, L] and
so γ is a principal cycle of β.
In the differential equation (24) let f = kg + m2. So it is obtained,

f ′ =
k′

2

k2 − k1
f + k′

g. (25)

By the same argument above the differential equation (25) has a L− periodic solution.
The points s where f(s) = 0 correspond to umbilic points of M2. Therefore γ is a principal
cycle of M2 if equation (25) has a periodic solution which is different from zero for all
s ∈ [0, L].

Remark 3. The condition kg 6= cte is a necessary condition for existence of the surface M2

as stated in the theorem 2 above.

Theorem 3. Let γ be a minimal principal cycle of a surface M1 ⊂ R3 such that kg|γ 6= cte.
Then there exists a surface M2 ⊂ R3 such that γ is a principal hyperbolic principal cycle of
M2 which is orthogonal to M1 along γ.

Proof. By theorem 1 we have that −kg is a principal curvature of M2 having T ∧ N as
positive normal vector in a neighborhood of γ. Defining a non constant L−periodic function
m2 such that m2(s) + kg(s) > 0 and

∫ L
0

m′
2

m2+kg
ds 6= 0 the result follows, observing that

∫ L
0

m′
2

m2+kg
ds =

∫ L
0

−k′
g

m2+kg
ds.

Theorem 4. Let γ be a hyperbolic (minimal) principal cycle of a surface M ⊂ R3 of length
L. Suppose that the geodesic curvature of γ is not constant. Then there exists a surface
M2 ⊂ R3 such that γ is a hyperbolic principal principal cycle of M2 which is orthogonal to
M1 along γ.

Proof. By theorem 1 we have that−kg is a principal curvature of M2 having T∧N as positive
normal vector in a neighborhood of γ. Define a non constant L−periodic function m2 such
that m2(s)+kg(s) > 0 and

∫ L
0

m′
2

m2+kg
ds 6= 0. Therefore γ is a hyperbolic (minimal) principal

cycle of M2 parametrized in a neighborhood of γ by the parametrization β. Observing that∫ L
0

m′
2

m2+kg
ds =

∫ L
0

−k′
g

m2+kg
ds, we can define m̄ = m2 + εk′

g to obtain m̄ as a maximal principal

curvature of M2 with m̄ + kg > 0 and
∫ L
0

m̄′

m̄+kg
ds 6= 0 for ε small.
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