Curvature lines on orthogonal surfaces of R³ **and Joachimsthal Theorem**

Ronaldo A. Garcia∗† Instituto de Matemática e Estatística Universidade Federal de Goiás Brazil

Abstract

In this paper is studied, as a complement of Joachimsthal theorem, the behavior of curvature lines near a principal cycle common to two orthogonal surfaces.

keywords: principal cycle, curvature lines. MSC: 53C12, 34D30, 53A05, 37C75

1 Introduction

The local behavior of curvature lines near umbilic points was considered by G. Darboux, [3], for analytic surfaces and by C. Gutierrez and J. Sotomayor, [7], for *C*^r surfaces.

Near principal cycles, the local behavior of curvature lines was first considered in details by C. Gutierrez and J. Sotomayor, [7]. They obtained the derivative of the first return map $\pi : \Sigma \to \Sigma$ associated to the periodic leaf and showed that generically (open and dense set of immersions) the principal cycles are hyperbolic, i.e, $\pi'(0) \neq 1$.

The Joachimsthal theorem says that two surfaces intersecting at a constant angle along a regular curve γ and this curve is a curvature line of one surface then it is a curvature line of the other.

The main goal of this paper is to describe the local behavior near a principal cycle common to two surfaces intersecting orthogonally.

[∗]ragarcia@mat.ufg.br

[†]The author was partially supported by FUNAPE/UFG and is fellow of CNPq. This work was done under the project PRONEX/FINEP/MCT - Conv. 76.97.1080.00 - Teoria Qualitativa das Equações Diferenciais Ordinárias and had the partial support of CNPq Grant 476886/2001-5.

2 Differential equation of curvature lines

A *principal curvature line* is a regular curve (parametrized by arc length *s*) $\gamma : (a, b) \to \mathbb{M} \backslash \mathcal{U}$ such that for all $s \in (a, b)$ we have $\gamma'(s)$ is a principal direction.

The normal curvature at p in the direction $w \in T_pM$ is $k_n(p; w) = II(p; w)/I(p; w)$, where *I* and *II* are, respectively, the first and second fundamental forms of M.

Therefore, $w = (du, dv)$ is a principal direction, if and only if, there exists $\lambda \in \mathbb{R}$ such that

$$
II(p; w) = \lambda I(p; w), \quad I(p; w) = 1.
$$

This means that *I* e *II* are proportional in the direction *w*. As $I(p; w) = Edu^2 + 2Fdudv + Gdv^2$ and $II(p; w) = edu^2 + 2fdudv + gdv^2$ we have that $w = (du, dv)$ is a principal direction, if and only if,

$$
\frac{\partial(I,II)}{\partial(du,dv)} = 0.
$$

Or, equivalently by,

$$
(Fg - Gf)dv^{2} + (Eg - Ge)dudv + (Ef - Fe)du^{2} = 0.
$$
 (1)

In the case where M is parametrized as graph $(x, y, h(x, y))$ we have that

$$
E = 1 + h_x^2,
$$

\n
$$
F = h_x h_y,
$$

\n
$$
G = 1 + h_y^2,
$$

\n
$$
e = \frac{h_{xx}}{\sqrt{EG - F^2}},
$$

\n
$$
f = \frac{h_{xy}}{\sqrt{EG - F^2}},
$$

\n
$$
g = \frac{h_{yy}}{\sqrt{EG - F^2}}.
$$

When M is defined implicitly $\mathbb{M} = \{(x, y, z) : h(x, y, z) = 0\}$ the differential equation of curvature lines is expressed y

$$
[dp, \nabla h, d\nabla h] = 0,
$$

where $dp = (dx, dy, dz)$, $\nabla h = (h_x, h_y, h_z)$, $d\nabla h = (dh_x, dh_y, dh_z)$ and $[., .,.]$ denotes the mist product of three vectors.

Remark 1. See the books and lecture notes [1], [2], [5], [7], [6], [8], [9], [10], [11] and [12] for more on local and global properties of principal curvature lines on surfaces.

3 General properties of curvature lines

Theorem 1 (Joachimsthal). Let $\mathbb{M}_1 \subset \mathbb{R}^3$ and $\mathbb{M}_2 \subset \mathbb{R}^3$ two regular and oriented surfaces such that $M_1 \cap M_2 = \gamma$ is a regular curve and $\langle N_1(\gamma(s)), N_2(\gamma(s)) \rangle = cte$ along γ , where *N*₁ and *N*₂ are unitary normal vector fields to M_1 and M_2 . Then γ is a principal curvature line of M_1 if and only if it is a curvature line of M_2 .

Proof. Suppose that $\langle N_1(\gamma(s)), N_2(\gamma(s)) \rangle = 0$.

Let $T = \gamma'(s)$ and suppose that γ is a principal curvature line, with geodesic curvature $k_{g,1}$, geodesic torsion $\tau_{g,1} = 0$ and principal curvature $k_{m,1}$, for the surface M₁. See [11]. So,

$$
T' = k_{g,1} N_1 \wedge T + k_{m,1} N_1
$$

\n
$$
(N_1 \wedge T)' = -k_{g,1} T + \tau_{g,1} N
$$

\n
$$
N'_1 = -k_{m,1} T - \tau_{g,1} N \wedge T
$$
\n(2)

The Darboux frame for γ , as a curve of M₂, is given by:

$$
T' = k_{g,2}N_2 \wedge T + k_{n,2}N_2
$$

\n
$$
(N_2 \wedge T)' = -k_{g,2}T + \tau_{g,2}N_2
$$

\n
$$
N'_2 = -k_{n,2}T - \tau_{g,2}(N_2 \wedge T)'
$$
\n(3)

where $k_{n,2}$ is the normal curvature, $\tau_{g,2}$ is the geodesic torsion and $k_{g,2}$ is the geodesic curvature of γ as a curve of M₂.

Also $N_2 = \pm N_1 \wedge T$, since $\langle N_1, N_2 \rangle = 0$. Suppose $N_2 = N_1 \wedge T$. From the equations (2) and (3), and using that $N_1 = T \wedge N_2$, it follows that:

$$
\tau_{g,2} = \tau_{g,1} = 0
$$

\n
$$
k_{g,1} = k_{m,2}
$$

\n
$$
k_{g,2} = k_{m,1}
$$

where $k_{m,2}$ is a principal curvature of M_2 . Therefore γ is a principal curvature line of M_2 . The case $\langle N_1, N_2 \rangle = cte \neq 0$ is analogous. \Box

Proposition 1. A closed, simple and biregular curve $c : \mathbb{R} \to \mathbb{R}^3$, $|c'(s)| = 1$, of length *L* and torsion τ is a principal curvature line of a surface if, and only if, $\int_0^L \tau(s)ds = 2k\pi, k \in \mathbb{N}$.

Proof. Consider the Frenet frame $\{t, n, b\}$ associated to *c*. Let $N = \cos \theta(s) n(s) + \sin \theta(s) b(s)$ be a unitary normal vector to *c*. So it follows that,

$$
N'(s) = -k(s)\cos\theta(s)t(s) + (\theta'(s) + \tau(s))[-\sin\theta(s)n(s) + \cos\theta(s)b(s)].
$$

Therefore, $N'(s) = \lambda t(s)$ if and only if $\theta'(s) + \tau(s) = 0$. So $\theta(L) - \theta(0) = -\int_0^L \tau(s)ds$ e $N(L) = N(0)$ if and only if $\int_0^L \tau(s)ds = 2k\pi$, $k \in \mathbb{N}$. \Box

Proposition 2. Let $\gamma : [0, L] \to \mathbb{R}^3$ be a principal cycle of a surface M such that ${T, N \wedge T, N}$ is a positive frame of \mathbb{R}^3 . Then the expression

$$
\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left(\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + \frac{1}{24}c(s)v^4 + o(v^4)\right)N(s), \quad -\delta < v < \delta
$$
\n⁽⁴⁾

143

where k_2 is the principal curvature in the direction of $N \wedge T$, defines a local C^{∞} chart on the surface Mˆ defined in a small tubular neighborhood of *γ*.

Proof. The map $\alpha(s, v, w) = c(u) + v(N \wedge T)(s) + wN(s)$ is a local diffeomorphism in a neighborhood of the *s* axis. For each *s*, the curve $v \to v(N \wedge T)(s) + w(s, v)N(s)$ is the intersection of the surface \mathbb{M} with the plane spanned by $\{(N \wedge T)(s), N(s)\}.$ Using Hadamard's lemma it follows that

$$
w(s, v) = \left[\frac{1}{2}k_2(s)v^2 + v^2A(s, v)\right]N(s)
$$

where $A(s, 0) = 0$ and k_2 is the (plane) curvature of the curve in the plane spanned by $\{N \wedge T, N\}$, that cuts the surface M. This ends the proof. \Box

According to [11], the Darboux frame $\{T, N \wedge T, N\}$ along γ satisfies the following system of differential equations:

$$
T' = k_g N \wedge T + k_1 N
$$

\n
$$
(N \wedge T)' = -k_g T + 0N
$$

\n
$$
N' = -k_1 T - 0(N \wedge T)
$$
\n(5)

where k_1 is the *principal curvature* and k_g is the *geodesic curvature* of the principal cycle γ .

4 Preliminary calculations

Consider the parametrizations α of M₁ and β of M₂ in a neighborhood of γ , such that ${T, N \wedge T, N}$ is a positive frame of γ as a curve of M₁ and ${T, N, T \wedge N}$ is a positive frame of γ as a curve of \mathbb{M}_2 .

$$
\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left[\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + O(v^3)\right]N(s)
$$

$$
\beta(s,w) = \gamma(s) + wN(s) + \left[\frac{1}{2}m_2(s)w^2 + \frac{1}{6}B(s)w^3 + O(w^3)\right](T \wedge N)(s).
$$
 (6)

4.1 Immersion α

The coefficients of the first fundamental form of α are given by:

$$
E_{\alpha}(s, v) = 1 - 2k_g v + [k_g^2 - k_1 k_2]v^2 + O(v^3)
$$

\n
$$
F_{\alpha}(s, v) = O(v^3)
$$

\n
$$
G_{\alpha}(s, v) = 1 + k_2^2 v^2 + O(v^3)
$$
\n(7)

The unitary normal vector field $\mathcal{N}_{\alpha} = (\alpha_s \wedge \alpha_v)/|\alpha_s \wedge \alpha_v|$ is given by:

$$
\mathcal{N}_{\alpha}(s,v) = \left[-\frac{1}{2}k_2'v^2 + O(v^3)\right]T(s) - [k_2v + \frac{1}{2}b(s)v^2 + O(v^3)](N \wedge T)(s)
$$

$$
+ [1 - \frac{1}{2}k_2^2v^2 + O(v^3)]N(s)
$$
 (8)

The coefficients of the second fundamental form of α are given by:

$$
e_{\alpha}(s, v) = k_1 - (k_1 + k_2)k_gv
$$

+ $\frac{1}{2}[k''_2 - (k_1 + k_2)k_1k_2 - k_gb(s) + 2k_g^2k_2]v^2 + O(v^3)$

$$
f_{\alpha}(s, v) = k'_2v + \frac{1}{2}[k_gk'_2 + b'(s)]v^2 + O(v^3)
$$

$$
g_{\alpha}(s, v) = k_2 + b(s)v + \frac{1}{2}(c(s) - k_2^3)v^2 + O(v^3)
$$
 (9)

The functions $L_{\alpha} = (Fg - Gf)_{\alpha}$, $M_{\alpha} = (Eg - Ge)_{\alpha}$ and $N_{\alpha} = (Ef - Fe)_{\alpha}$ are given by:

$$
L_{\alpha}(s, v) = -k'_{2}v - \frac{1}{2}(k_{g}k'_{2} + b'(s))v^{2} + O(v^{3})
$$

\n
$$
M_{\alpha}(s, v) = k_{2} - k_{1} + [(k_{1} - k_{2})k_{g} + b(s)]v
$$

\n
$$
+ \frac{1}{2}[(-3k_{1}k_{2}^{2} - 3k_{g}b(s) + c(s) - k_{2}^{3} - k''_{2} + k_{1}^{2}k_{2}]v^{2} + O(v^{3})
$$

\n
$$
N_{\alpha}(s, v) = k'_{2}v + \frac{1}{2}(b'(s) - 3k_{g}k'_{2})v^{2} + O(v^{3})
$$
\n(10)

The functions \mathcal{K}_α and \mathcal{H}_α are given by:

$$
\mathcal{K}_{\alpha}(s,v) = k_1 k_2 + [(k_1 k_2 - k_2^2)k_g(s) + k_1 b(s)]v + O(v^2)
$$

$$
\mathcal{H}_{\alpha}(s,v) = \frac{1}{2}(k_2 + k_1) + \frac{1}{2}[(k_1 - k_2)k_g + b(s)]v + O(v^2)
$$
\n(11)

The principal curvatures $k_{1,\alpha} = \mathcal{H}_{\alpha} - \sqrt{\mathcal{H}_{\alpha}^2 - \mathcal{K}_{\alpha}}$ and $k_{2,\alpha} = \mathcal{H}_{\alpha} + \sqrt{\mathcal{H}_{\alpha}^2 - \mathcal{K}_{\alpha}}$ are given by:

$$
k_{1,\alpha}(s,v) = k_1 + (k_1 - k_2)k_g v + 0(v^2)
$$

\n
$$
k_{2,\alpha}(s,v) = k_2 + b(s)v + 0(v^2)
$$
\n(12)

Remark 2. The following relations holds

$$
k_g(s) = -\frac{(k_1)_v}{k_2 - k_1}, \ \ k_g^{\perp}(s) = -\frac{(k_2)'}{k_2 - k_1}, \quad b(s) = (k_2)_v = \frac{\partial k_2}{\partial v}
$$
(13)

Here $k_g^{\perp}(s)$ is the geodesic curvature of the other principal curvature line which pass through *γ*(*s*).

4.2 Immersion β

The coefficients of the first fundamental form of *β* are given by:

$$
E_{\beta}(s, w) = 1 - 2k_1 w + (k_1^2 + k_g m_2) w^2 + O(w^3)
$$

\n
$$
F_{\beta}(s, w) = O(w^3)
$$

\n
$$
G_{\beta}(s, w) = 1 + m_2^2 w^2 + O(w^3)
$$
\n(14)

The unitary normal vector field $\mathcal{N}_{\beta} = \beta_s \wedge \beta_w / |\beta_s \wedge \beta_w|$ is given by:

$$
\mathcal{N}_{\beta}(s, w) = \left[-\frac{1}{2}m_2'w^2 + O(w^3)\right]T(s) - \left[m_2w + \frac{1}{2}B(s)w^2 + O(w^3)\right](N \wedge T)(s) \n+ \left[1 - \frac{1}{2}m_2^2w^2 + O(w^3)\right]N(s)
$$
\n(15)

The coefficients of the second fundamental form of *β* are given by:

$$
e_{\beta}(s, w) = -k_g - k_1[m_2 - k_g]w
$$

+ $\frac{1}{2}[m_2'' - k_1B(s) + 2k_1^2m_2 + k_g^2m_2 + k_gm_2^2]w^2 + O(w^3)$

$$
f_{\beta}(s, w) = m_2'v + \frac{1}{2}[k_1m_2' + B'(s)]w^2 + O(w^3)
$$

$$
g_{\beta}(s, w) = m_2 + B(s)w + \frac{1}{2}(C(s) - m_2^3)w^2 + O(w^3)
$$
 (16)

The functions $L_{\beta} = (Fg - Gf)_{\beta}, M_{\beta} = (Eg - Ge)_{\beta}$ and $N_{\beta} = (Ef - Fe)_{\beta}$ are given by:

$$
L_{\beta}(s, w) = -m_2'w - \frac{1}{2}(k_1m_2' + B'(s))w^2 + O(w^3)
$$

\n
$$
M_{\beta}(s, w) = m_2 + k_g + [B(s) - k_1(m_2 + k_g)]v
$$

\n
$$
+ \frac{1}{2}[(3k_gm_2^2 - 3k_1B(s) + C(s) - m_2^3 - m_2'' - k_g^2m_2]w^2 + O(w^3)
$$

\n
$$
N_{\beta}(s, w) = m_2'(s)v + \frac{1}{2}(B'(s) - 3k_1m_2')w^2 + O(w^3)
$$
\n(17)

The functions \mathcal{K}_{β} and \mathcal{H}_{β} are given by:

$$
\mathcal{K}_{\beta}(s, w) = -k_g m_2 - [(k_g m_2 + m_2^2)k_1 + k_g B(s)]w + O(w^2)
$$

$$
\mathcal{H}_{\beta}(s, w) = \frac{1}{2}(m_2 - k_g) + \frac{1}{2}[B(s) - (k_g + m_2)k_1]w + O(w^2)
$$
 (18)

The principal curvatures $k_{1,\beta} = \mathcal{H}_{\beta} - \sqrt{\mathcal{H}_{\beta}^2 - \mathcal{K}_{\beta}}$ and $k_{2,\beta} = \mathcal{H}_{\beta} + \sqrt{\mathcal{H}_{\beta}^2 - \mathcal{K}_{\beta}}$ are given by:

$$
k_{1,\beta}(s, w) = -k_g - (k_g + m_2)k_1w + O(w^2)
$$

\n
$$
k_{2,\beta}(s, w) = m_2 + B(s)w + O(w^2)
$$
\n(19)

146

5 Principal cycles

Proposition 3 (Gutierrez-Sotomayor). Let γ be a principal cycle of an immersion $\alpha : \mathbb{M} \to \mathbb{R}^3$ of length *L*. Denote by π_α the first return map associated to γ . Then

$$
\pi'_{\alpha}(0) = exp\left[\int_{\gamma} \frac{-dk_2}{k_2 - k_1}\right] = exp\left[\int_{\gamma} k_g^{\perp}(s)ds\right]
$$

$$
= exp\left[\int_{\gamma} \frac{-dk_1}{k_1 - k_2}\right] = exp\left[\frac{1}{2} \int_{\gamma} \frac{d\mathcal{H}}{\sqrt{\mathcal{H}^2 - \mathcal{K}}}\right].
$$
\n(20)

Proof. Suppose that γ is a principal cycle and consider the chart (s, v) as defined by the expression of α in the equation (6). The differential equation of the principal curvature lines is given by

$$
(f - k_1 F)ds + (g - k_1 G)dv = 0.
$$
\n(21)

Therefore $\pi(v_0) = v(L, v_0)$, where $v(s, v_0)$ is the solution of equation 21 with initial condition $v(0, v_0) = v_0$.

Differentiation of equation 21 with respect to v_0 gives:

$$
\frac{d}{ds}\left(\frac{\partial v}{\partial v_0}\right)(s, v(s, v_0)) = -\left[\frac{f - k_1 F}{g - k_1 G}\right]_v(s, v(s, v_0)) \frac{\partial v}{\partial v_0}(s, v(s, v_0))
$$

Denote $a(s) = \left(\frac{\partial v}{\partial v_0}\right)(s, 0)$. Therefore at $v(s, 0) = 0$ it is obtained

$$
\frac{d}{ds}a(s)=-\frac{f_v(s,0)}{g-k_1}a(s)=-\frac{k_2'}{k_2-k_1}a(s)=k_g^\perp(s)a(s),\ \ a(0)=1.
$$

Integration of the linear differential equation above leads to the result.

 \Box

The following result established in [4] is improved in the next proposition.

Proposition 4. Let γ be a principal cycle of length *L* of a surface $\mathbb{M} \subset \mathbb{R}^3$. Consider a chart (s, v) and a parametrization α as defined by equation (6). Denote by k_1 and k_2 the principal curvatures of M. Suppose that $Jac(k_1, k_2) = \frac{\partial (k_1, k_2)}{\partial (s, v)} = (k_1)_s (k_2)_v - (k_1)_v (k_2)_s \neq 0$ for all $s \in [0, L]$. Then if γ is not hyperbolic then it is semihyperbolic. That is, if the first derivative of the first return map *π* associated to *γ* is one, then the second derivative of *π* is different from zero. In fact, if $\pi'(0) = 1$ then,

$$
\pi''(0) = \int_0^L e^{-\int_0^s \frac{k_2'}{k_2 - k_1} du} \frac{Jac(k_1, k_2)}{(k_2 - k_1)^2} ds.
$$

Proof. The differential equation of the principal curvature lines 21 in the chart (s, v) is given by

$$
\frac{dv}{ds} = -\frac{f - k_1 F}{g - k_1 G}
$$
\n
$$
= -\frac{k_2'}{k_2 - k_1} v - \frac{1}{2} \left[\frac{b'(k_2 - k_1) - 2k_2' b + k_g k_2'(k_1 - k_2)}{(k_2 - k_1)^2} \right] v^2 + v^2 R(s, v). \tag{22}
$$
\n
$$
= P(s)v + \frac{1}{2} Q(s)v^2 + R(s, v)v^2, \qquad R(s, 0) = 0
$$

Therefore $\pi(v_0) = v(L, v_0)$, where $v(s, v_0)$ is the solution of equation (22) with initial condition $v(0, v_0) = v_0$.

Differentiating twice the equation (22) with respect to v_0 and evaluating at $v_0 = 0$ the following holds

$$
\frac{d}{ds}(\frac{\partial v}{\partial v_0}) = P(s)\frac{\partial v}{\partial v_0}
$$

$$
\frac{d}{ds}(\frac{\partial^2 v}{\partial v_0^2}) = P(s)\frac{\partial^2 v}{\partial v_0^2} + Q(s)(\frac{\partial v}{\partial v_0})^2
$$

$$
\frac{\partial v}{\partial v_0}(0) = 1, \qquad \frac{\partial^2 v}{\partial v_0^2}(0) = 0
$$

So,

$$
\pi''(0) = \frac{\partial^2 v}{\partial v_0^2}(L) = \int_0^L exp(\int_0^s P(u) du) Q(s) ds
$$

=
$$
\int_0^L exp(-\int_0^s \frac{k_2'}{k_2 - k_1} du) [\frac{2k_2' b - b'(k_2 - k_1) - k_g k_2'(k_1 - k_2)}{(k_2 - k_1)^2}] ds
$$

Integration by parts and using that $k_g(k_1 - k_2) = \frac{\partial k_1}{\partial v}$ it follows that

$$
\pi''(0) = \int_0^L \exp(-\int_0^s \frac{k'_2}{k_2 - k_1} du) \left[\frac{k'_1 \frac{\partial k_2}{\partial v} - k'_2 \frac{\partial k_1}{\partial v}}{(k_2 - k_1)^2} \right] ds
$$

=
$$
\int_0^L \exp(-\int_0^s \frac{k'_2}{k_2 - k_1} du) \frac{Jac(k_1, k_2)}{(k_2 - k_1)^2} ds
$$

 \Box

Proposition 5. Let $c : \mathbb{R} \to \mathbb{R}^3$, $|c'(s)| = 1$ be a closed, simple and biregular curve of length *L* and torsion τ such that $\int_0^L \tau(s) ds = 2k\pi$, $k \in \mathbb{N}$. Then there exists an immersion $\alpha : [0, L] \times (-\epsilon, \epsilon) \to \mathbb{R}^3$ such that $\alpha(s, 0) = c(s)$ is a hyperbolic principal cycle of α .

Proof. It follows from propositions 2 and 3 defining the principal curvatures adequately.

Theorem 2. Let γ be a hyperbolic (minimal) principal cycle of a surface $\mathbb{M} \subset \mathbb{R}^3$ of length *L*. Let k_1 and k_2 the principal curvatures of \mathbb{M}_1 and k_g the geodesic curvature of γ . Let $P(s) = k_2'/(k_2 - k_1)$ and suppose that the linear differential equation $f' = P(s)f + k_g'$ has a *L*−periodic solution such that $f(s) \neq 0$ for all $s \in [0, L]$. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a principal hyperbolic principal cycle of \mathbb{M}_2 which is orthogonal to \mathbb{M}_1 along γ and $\pi'_1(0) = \pi'_2(0)$.

Proof. Consider the parametrizations α of M₁ and β of M₂ in a neighborhood of γ ,

$$
\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left[\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + O(v^3)\right]N(s)
$$

$$
\beta(s,w) = \gamma(s) + wN(s) + \left[\frac{1}{2}m_2(s)w^2 + \frac{1}{6}B(s)w^3 + O(w^3)\right](T \wedge N)(s).
$$

where $\{T, N \wedge T, N\}$ is a positive frame of γ as curve of M₁ and $\{T, N, T \wedge N\}$ is a positive frame of γ as curve of \mathbb{M}_2 .

By proposition 3 it follows that

$$
\pi'_{\alpha}(0) = exp[-\int_{\gamma} \frac{dk_2}{k_2 - k_1}], \qquad \pi'_{\beta}(0) = exp[-\int_{\gamma} \frac{dm_2}{m_2 + k_g}]
$$
\n(23)

Suppose that the following equation holds

$$
\frac{k_2'}{k_2 - k_1} = \frac{m_2'}{m_2 + k_g}.
$$

Then m_2 is a defined by the linear differential equation:

$$
m_2' - \frac{k_2'}{k_2 - k_1} m_2 - k_g \frac{k_2'}{k_2 - k_1} = 0, \ \ m_2(0) = m_0. \tag{24}
$$

The solution of the linear equation above is given by

$$
m_2(s) = e^{\int_0^s a(t)dt} [m_0 + \int_0^s e^{-\int_0^t a(u)du} k_g(t) a(t) dt],
$$

where $a(s) = k'_2/(k_2 - k_1)(s)$. As, by hypothesis, \int_0^L $\frac{k_2'}{k_2 - k_1} \neq 0$ it follows that $m_0 = m_2(0) = m_2(L)$ if and only if

$$
m_0 = \frac{\int_0^L (e^{-\int_0^t a(u) du}) k_g(t) a(t) dt}{e^{-\int_0^L \frac{k'_2}{k_2 - k_1} ds} - 1}.
$$

149

 \Box

Therefore the immersion β can be constructed with m_2 , principal curvature of β , defined by the equation 24. To finish we need to show that $m_2(s) + k_g(s) \neq 0$ for all $s \in [0, L]$ and so γ is a principal cycle of β .

In the differential equation (24) let $f = k_q + m_2$. So it is obtained,

$$
f' = \frac{k'_2}{k_2 - k_1} f + k'_g.
$$
\n(25)

By the same argument above the differential equation (25) has a *L*− periodic solution. The points *s* where $f(s) = 0$ correspond to umbilic points of \mathbb{M}_2 . Therefore γ is a principal cycle of M_2 if equation (25) has a periodic solution which is different from zero for all $s \in [0, L].$ \Box

Remark 3. The condition $k_g \neq cte$ is a necessary condition for existence of the surface \mathbb{M}_2 as stated in the theorem 2 above.

Theorem 3. Let γ be a minimal principal cycle of a surface $\mathbb{M}_1 \subset \mathbb{R}^3$ such that $k_g|_{\gamma} \neq cte$. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a principal hyperbolic principal cycle of M_2 which is orthogonal to M_1 along γ .

Proof. By theorem 1 we have that $-k_q$ is a principal curvature of M₂ having $T \wedge N$ as positive normal vector in a neighborhood of *γ*. Defining a non constant *L*−periodic function $\frac{m_2}{m_2+k_g}ds\neq 0$ the result follows, observing that m_2 such that $m_2(s) + k_g(s) > 0$ and \int_0^L $\frac{-k'_g}{m_2+k_g}ds.$ \int_0^L $\frac{m'_2}{m_2+k_g}ds = \int_0^L$ \Box

Theorem 4. Let γ be a hyperbolic (minimal) principal cycle of a surface $\mathbb{M} \subset \mathbb{R}^3$ of length *L*. Suppose that the geodesic curvature of γ is not constant. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a hyperbolic principal principal cycle of \mathbb{M}_2 which is orthogonal to M¹ along *γ*.

Proof. By theorem 1 we have that $-k_q$ is a principal curvature of M₂ having $T \wedge N$ as positive normal vector in a neighborhood of γ . Define a non constant *L*−periodic function m_2 such that $m_2(s) + k_g(s) > 0$ and \int_0^L $\frac{m'_2}{m_2+k_g}$ *ds* $\neq 0$. Therefore γ is a hyperbolic (minimal) principal cycle of M² parametrized in a neighborhood of *γ* by the parametrization *β*. Observing that \int_0^L $\frac{m'_2}{m_2 + k_g} ds = \int_0^L$ $\frac{-k'_{g}}{m_{2}+k_{g}}ds$, we can define $\bar{m} = m_{2} + \epsilon k'_{g}$ to obtain \bar{m} as a maximal principal curvature of M_2 with $\bar{m} + k_g > 0$ and \int_0^L $\frac{\bar{m}'}{\bar{m}+k_g}ds\neq 0$ for ϵ small.

 \Box

References

- [1] M. Berger and B. Gostiaux Introduction to Differential Geometry, Springer Verlag, New York, (1987).
- [2] M. DO CARMO, Differential Geometry of curves and surfaces, Prentice Hall, New Jersey, (1976).
- [3] G. DARBOUX *Leçons sur la Théorie des Surfaces, vol.I, IV*, Gauthiers Villars, (1896).
- [4] C. GUTIERREZ and J. SOTOMAYOR, *Closed principal lines and bifurcation*, Bull. Braz. Math. Soc. **17**, 1986, pp. 1-19
- [5] R. Garcia and J. Sotomayor *Lectures Notes on Qualitative Theory of Differential Equations of Classical Geometry* , Notas de Curso, IME/UFG, (2000).
- [6] A. GRAY, L. CORDEIRO and M. FERNANDEZ, *Geometría diferencial de curvas y superficies, con Mathematica*, Addison-Wesley Iberoamericana, (1995).
- [7] C. GUTIERREZ and J. SOTOMAYOR, *Lines of Curvature and Umbilic Points on Surfaces*, Brazilian 18th Math. Coll., IMPA, 1991, Reprinted as *Structurally Configurations of Lines of Curvature and Umbilic Points on Surfaces, Monografias del IMCA*, (1998).
- [8] H. Hopf, *Differential Geometry in the Large*, Springer Lecture Notes in Mathematics, vol. 1000, (1983).
- [9] D. Hilbert and S. Cohn Vossen *Geometry and the Imagination*, Chelsea, (1952).
- [10] G. Monge *Journ. de l'Ecole Polytech*, *II*e, (1796), *Applications de l'Algebre a la Geometrie*, Paris, (1850).
- [11] M. Spivak *A Comprehensive Introduction to Differential Geometry,* vol.III, V, Publish of Perish Berkeley, (1979).
- [12] D. Struik *Lectures on Classical Differential Geometry*, Addison Wesley, (1950), Reprinted by Dover Collections, (1978).