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ABSTRACT

An observation on Cauchy’s integral theorem is made the purpose of settling
adisagreement on the meaning of an inquiry of L. V. Ahlfors.
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RESUMEN

Se hace una observacion sobre el teorema integral de C auchy, destinada a
resolver un desacuerdo acerca de una inquietud originada por L. V. Ahlfors.
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In an attempt to address an inquiry of L.. V. Ahlfors [1], p. 144, we proposed

some time ago (see Charris and Rodriguez-Blanco [2]) an analytic proof of
Theorema I below.

Theorem 1 If 10 = fdx + gdy is a closed C' form on an open subset Q of

Candif v isa null-homologous closed path in Q then
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That wis a closed C' form in Q means that f, g are C' in Q and
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That v is null-homologous in £ means that if we define

dz

Ind, (a):= ;
& 27i -}[z—a 3)

ae C\e([0,1]). then Ind, (a)=0 for all a ¢ € (all paths are supposed to be
parametrized by [0, 1]).

Now consider the following theorem.

Theorem 2 If 1l = fdx + gdy is a locally exact form on the open subset
Q of C, then
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for any closed null-homologous path 7y in Q

That 1(/is a locally exact form in © means that f and g are continuous in
Q and forany ae€ Q. r >0 and F can be found such that

D(a,r)={z)z|—a<r}cQand

fla)= %f; (2), ‘Q(Z)Z-?)f (2),2€ D(a,r) (5)

Different persons support the opinion, as they have pointed out to us either
personally or by written communication (among them, Professors J. Bustoz, F.
Marcellin and F. Soriano, as well as many students), that Ahlfors” claim refers to
THEOREM 2, not to Theorem 1.

In order to settle the above disagreement we show in this brief note that
Theorem 2 is a fairly easy consequence of Theorem I and, as a matter of fact,

that they are equivalent.

To this purpose, we resort, as we did in [2] for the proof of Theorem 1, to the
¢~ functions given by

QD(:'.)= i ? ;_'| (6)




and

1

05(2)= -, 0%,2eC 8>0, (7)
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where ¢ = _[ ¢Q (z)dxdy, z = x + iy.

Now let f be continuos in Q and U be an open relatively compact subset of

Q (i.e., U iscompactand U c Q). Let

dxdy,E e U
Hf(z (& - z)dxdy,& %

and 0<6 <dist (U,C) Observe that Supp @; ={z’- z‘,Sﬁ}. Thus,

Is = [ #@;, the convolution of f and ¢5 on U. Also

s JI f€—2)ps(2)dxdy,E€ U, 9)

ie.fs =@s* fonU.

The functions f; are C™ functions in U with, for example,

af‘) =| f* a@g‘f = a}‘a ~| 24 a_% i
0= e 1438 ]@_m :
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Further, 5:’ =§{ @5 8\ =;{ *®s- provided é{ and é{ existin Q

and are continuous there. If K'is a compact subset of Q and £ >0, letting & >0

be such that :f( —-z)-f()<eforallée K and z <6 (which follows

from the uniform continuity of f on any open relatively compact neighborhood
Uof Kin Q), then

€)= €)< [[ 1E=2)-rE)os (e hixay<e [[o, (e ixdy=e.E < K.
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so that f can be uniformly approximated on compact subset of Q by means

of the ¢= functions f; . This well known result is of importance in complex

analysis and in many other instances. We use it in the proof of Theorem 2.

48 Proof of Theorem 2.

Let K=y([0.1])U1(y). where I(y)= e C\y([0.1]ind, (a)= 0} is the
interior of ¥ . Since ¥ is null-homologous in € then / (y)g Q. and thus Kisa
compact subset of Q. Let € >0 and U be an open neighborhood of K such
that U is compactand U c Q. Foreach ae U, let 0<r, <dist(U,(-Q)

be such that (5) holds for some C' function Fand all z€ D(a,r,) Let r>0
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be a Lebesgue number of the covering {D(a,rn ]ae U } so that, for any
Ee U, D(&,r) is contained in D(a,r) for some ae U. and let 0<§ <;;
be such that *Uf"f (2)- £ (31 =L and“}_‘ﬂg (2)-25(2) <€ . We claim that
W, = fsdx+ gsdy is a closed form on U. In fact, for ae U let F be C "in

D(a, r) and such that (5) holds forall ze D(a.r).Clearly (F =@, XE ) is well
defined forall & € D(a,§ ), and therefore

s . 90; JIF _ 90, .0’
£ — . L - A = —_— O — F E
ay [f oy ](“) [8.\‘ B |y [
97, oF 0@ dg s
— F i . —_— kTP — Y0
[ dyox }a) (8}* ox }a) ox (a)

Hence 11; is as claimed. Since /(y)c U, y is null-homologous in U, and it

follows from Theorem 1 that J W; =0. so that
Y

b

L‘H / —L'msi < 2¢L(y)



Where L(y) is the lenghtof . Since ¢ > () is arbitrary, this ensures that (4)
holds. ]

The argument in the above proof is standard in distribution theory, where the
irregular or singular behaviour of relevant functions is transfered to very regular
auxiliary ones. In our case, the functions f; g in Theorem 2 are not necessarily C'
and w is not closed, but s is.

Now assume that 1/ = fdx + gdy is aclosed C'formin Q and let ae Q and
r>0 be such that D(a,r)c Q. Let

F(z)= [w,ze D(a,r)

Yz

(10)

where v, (t)=1z+(1—1)z,0<1 <1. A fairly easy calculation shows that (5)

holds for ze D(a,r) Hence 1t/ s locally exact in . Thus, Theorem 2 also
implies Theorem 1.
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